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An exact perturbation analysis method in Monte Carlo radiation transport calcu-
lations is investigated utilizing the coupling of forward and adjoint simulations. The
vehicle chosen for this investigation is correlated-coupling for time-independent neu-
tron or photon transport problems, which has been applied to material perturbation
isolated from both the source and detector. By initiating forward and adjoint sim-
ulation histories (trajectories) in opposite directions at a position sampled from the
interface between the perturbed and unperturbed materials, the correlated-coupling
can exclusively construct the physical particle histories traversing the perturbed ma-
terial. In other words, only those histories that have influence on the variation of the
detector response are simulated. There exists no approximation in the sense that all
the higher order perturbed terms in the response variation are kept. Moreover, the
statistical error is estimated in the same way as in the confidence interval estimation
in a standard forward or adjoint calculation. The theoretical basis lies in response
decomposition with an enclosure containing both the source and detector. Numerical
results are shown for multi-energy group problems.c© 2001 Academic Press
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I. INTRODUCTION

In radiation transport calculations, forward Monte Carlo methods solve transport equation
[1] by simulating particles born at a physical source based on the probability density func-
tions for various naturally occurring events. The adjoint transport equation is also solved by
Monte Carlo methods with an artificially constructed transport mechanism [2, 3] that can be
interpreted as backward processes in a sense that simulation particles are born at a physical
detector and their scores are collected at the physical source. These standard methods have
been practiced for several decades.
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It is sometimes the case that the particle transport from a physical source to a physical
detector is decomposed into several naturally occurring or artificially devised transport
problems. Two-dimensional spatial surfaces may be placed to couple the forward or adjoint
simulations of the decomposed problems. As a straightforward example, forward and adjoint
histories (trajectories in state space) are initiated at a physical source and a physical detector,
respectively, and the forward and adjoint scores for discretized space–energy–angle cells are
tallied at an intermediate surface [4]. As another straightforward example, either forward or
adjoint histories are initiated and the discretized scores are tallied at the intermediate surface
to create the source distribution for the next stage calculation [5]. On the other hand, forward
and adjoint histories can be initiated in exactly opposite directions at the intermediate
surface without introducing discretization [6]. This discretization-free coupling method
may be called correlated-coupling, since the initially oppositely moving forward and adjoint
histories are independent, conditional on their common initial variables. This paper seeks to
combine correlated-coupling with the perturbation analysis of a neutron or photon source-
detector system.

Physically, the probability of the neutral particle’s first entrance to a subdomain does
not get affected by a change in the material properties therein. In other words, a physical
detector response can be decomposed into a component invariant against, and a component
influenced by, material changes in a subdomain. Forward-adjoint coupling methods may
be sought to calculate the latter component independently of the former component. This
idea is attractive because only the latter component needs to be calculated to evaluate
the variation of the detector response, and a radiation detection instrument is generally an
independent device to be inserted to measure some properties of a physical system of interest.
Moreover, if forward and adjoint simulation histories can be initiated in opposite directions
at the interface between perturbed and unperturbed materials, the physical particle histories
traversing the perturbed material can be exclusively constructed. This paper specializes
in material changes in a subdomain isolated from both physical source and detector. The
corresponding Monte Carlo perturbation analysis becomes a very difficult task because only
the particle histories that enter and exit the subdomain before reaching the physical detector
have real influence on the response variation.

In our previous work [7, 8], various possibilities of correlated-coupling were investigated
based on integrals over a spatial surface between a physical source and a physical detector.
Similar investigations can also be made in terms of response decomposition with surface
integral at an enclosure containing both the physical source and detector. Consequently, the
response variation resulting from a material change outside the source-detector enclosure
is exactly expressed as the integral over that enclosure of the product of the directional
cosine and two flux quantities: The flux in the forward problem for the spatial subdomain
with only the unperturbed material and the flux difference between the adjoint problems
for the whole spatial domain. Such a surface integral can be computed efficiently by the
initial-variable sampling methodologies in the correlated coupling [7, 8]. The resulting
computational method has two notable characteristics; first, one Monte Carlo calculation
evaluates the variation of a detector response based on an unbiased estimation of the exact
integral expression, and second, the statistical error is estimated in the same way as in the
confidence interval estimation in a standard forward or adjoint Monte Carlo calculation. In
other words, without worrying about which of the first, second, and higher order perturbation
treatments is appropriate, one can evaluate response variation by a standard confidence
interval estimation using an unbiased sample variance estimator. These characteristics are
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advantageous points because standard techniques in Monte Carlo perturbation analysis
[9, 10] are generally valid within the framework of finite order perturbation theory, and
their error estimation often needs intricate treatments.

II. PROBLEM STATEMENT

A source-detector system for neutron or photon is treated in this paper. We consider
material perturbations outside an enclosure containing both the source and detector. We
derive integral expressions with the product of forward and adjoint angular fluxes at the en-
closure, which can be used to compute quantities difficult to evaluate by a standard forward
or adjoint Monte Carlo method.

The volume inside the source-detector enclosure is denoted byVSD, the whole spatial
domain byV , and the volume outside the source-detector enclosureV\VSD. Figure 1 shows
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FIG. 1. Source-detector system and material perturbation. (Two perturbation types are shown; the whole
spatial domain is denoted byV and its external surface by∂V ; a spatial subdomain containing both the source
and detector is denoted byVSD and the surface enclosing that subdomain by∂VSD; ∂V and∂VSD have intersection
in (b) but do not in (a); material outsideVSD is perturbed; particle histories are categorized according to whether
they pass the perturbed subdomain or not, H2 or H1.)
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examples of the source-detector enclosure. Two problems defined onV are considered:

1. In problem 1, material 1 occupiesV\VSD and
2. In problem 2, material 2 occupiesV\VSD.

Throughout this paper problems 1 and 2 are denoted by P1 and P2, respectively, and
the material inVSD is fixed (remains the same for P1 and P2). The source distribution
S( r

¯
, Ä

¯
, E) and the detector response functionD( r

¯
, Ä

¯
, E) are also fixed. Here, as usual,

r
¯

denotes position vector,Ä
¯

unit vector of direction of movement, andE energy. We
consider the forward and adjoint transport equations for P1 and P2, whose solution express
a quantity equivalent to particle flux. The forward equations express naturally occurring
particle transport originating from the source. The adjoint equations express artificially
devised backward particle transport originating from the detector. They share the same
total macroscopic cross section6t ( r¯

, E) defined as the mean number of collisions per
unit path length travelled. With the interchanged roles of the energies and directions of
movements at precollision and at postcollision, the forward and adjoint equations also
share differential scattering macroscopic cross section6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E) whose

definition in the forward equation is the mean number of particles with energy in unit
interval aroundE and direction of movement in unit solid angle aroundÄ

¯
per unit path

length travelled by the particle withE′ andÄ
¯
′. (See [1, 11] for details of transport equation.)

Also, the following physical observation is important: a change in the material properties
in a subdomain affects particle distribution both inside and outside that subdomain, and the
solution of the corresponding transport equation is perturbed over the whole spatial domain.
Mathematically, this is the consequence of a continuity condition of transport equation.

III. THEORETICAL DEVELOPMENT

The purpose of this section is to obtain the exact surface integral expression of the
response variation from P1 to P2. The forward transport equation for P1 is ([1, 11]):

Ä
¯
· ∇̄91( r¯

, Ä
¯
, E)+6t ( r¯

, E)91( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)91( r¯

, Ä
¯
′, E′) dÄ′d E′

+ S( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (1)

Ä
¯
· ∇̄91( r¯

, Ä
¯
, E)+61,t ( r¯

, Ä
¯
, E)91( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
61,s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)91( r¯

, Ä
¯
′, E′) dÄ′d E′ for r

¯
∈ V\VSD, (2)

91( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (3)

with a continuity condition,

lim
ε↓0
91( r¯

− εÄ
¯
, Ä

¯
, E) = lim

ε↓0
91( r¯

+ εÄ
¯
, Ä

¯
, E) for r

¯
∈ ∂VSD\∂V,

where the macroscopic cross sections in Eq. (1) correspond to a fixed (never perturbed)
material inVSD; the subscript 1 of the macroscopic cross sections in Eq. (2) implies that
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V\VSD is occupied by material 1; the subscript 1 in the forward angular flux stands for the
solution corresponding to such material distribution; 4π denotes the unit spherical surface
with its center at the origin; andE0 is the maximum energy allowed in the physical problem
under consideration. Throughout this paper, “∂” denotes the surface of a volume and “\” the
relative complement of a set (the difference of sets);r

¯
∈ ∂VSD\∂V implies thatr

¯
belongs

to ∂VSD but does not belong to∂V . Equations (1) and (2) may be written as

Ä
¯
· ∇̄91( r¯

, Ä
¯
, E)+61,t ( r¯

, Ä
¯
, E)91( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
61,s( r¯

, Ä
¯
′ →Ä

¯
, E′ → E)91( r¯

, Ä
¯
′, E′) dÄ′ d E′ + S( r

¯
, Ä

¯
, E) for r

¯
∈V,

61,t ( r¯
, Ä

¯
, E) = 6t ( r¯

, E) for r
¯
∈ VSD,

61,s( r¯
, Ä

¯
′ → Ä

¯
, E′ → E) = 6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E) for r

¯
∈ VSD,

S( r
¯
, Ä

¯
, E) = 0 for r

¯
∈ V\VSD.

The above equations emphasize that the material inVSD is fixed (remains unperturbed),
and the region outsideVSD is occupied by any material designated as 1, while Eqs. (1) and
(2) emphasize the explicit form inVSD and inV\VSD, respectively, taken by the forward
transport equation for P1. This paper follows the style of Eqs. (1) and (2). The unnumbered
continuity condition clarifies that there is no singular source such as a point or surface source
at ∂VSD\∂V ; the source is strictly contained insideVSD. The adjoint transport equation for
P2 is ([11])

−Ä
¯
· ∇̄9∗2( r¯, Ä¯, E)+6t ( r¯

, E)9∗2( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)9∗2( r¯

, Ä
¯
′, E′) dÄ′d E′

+ D( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (4)

−Ä
¯
· ∇̄9∗2( r¯, Ä¯, E)+62,t ( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
62,s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)9∗2( r¯

, Ä
¯
′, E′) dÄ′d E′ for r

¯
∈ V\VSD, (5)

9∗2( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
> 0, (6)

with a continuity condition,

lim
ε↓0
9∗2( r¯

− εÄ
¯
, Ä

¯
, E) = lim

ε↓0
9∗2( r¯

+ εÄ
¯
, Ä

¯
, E) for r

¯
∈ ∂VSD\∂V,

where the macroscopic cross sections in Eq. (4) are the same as those in Eq. (1); the
subscript 2 of the macroscopic cross sections in Eq. (5) implies thatVSD is occupied by
any material designated as 2; and the subscript 2 in the adjoint angular flux stands for the
solution corresponding to such material distribution. The unnumbered continuity condition
clarifies that there is no singular detector such as a point or surface detector at∂VSD\∂V ;
the detector is strictly contained insideVSD.

We multiply Eq. (1) by9∗2 and Eq. (4) by91, subtract the latter from the former, integrate
over VSD, direction of movement and energy. The terms with the total macroscopic cross
section cancel out. The terms with the differential scattering macroscopic cross section
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cancel out by interchanging the integration variablesÄ
¯

, E andÄ′, E′ in one of these terms.
Then, converting the remaining volume integral (dV) in the left-hand side to the surface
integral (d A) by the divergence theorem, one obtains∫

∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
91( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A

=
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ dV

−
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)91( r¯

, Ä
¯
, E) d E dÄ dV, (7)

where in the left-hand side the surface integration domain is intended to cover both (a) and
(b) in Fig. 1 with the consideration of the external boundary conditions (3) and (6) for the
latter. The second term in the right-hand side of Eq. (7) is the physical detector response of
P1 [11, 12]:

R1 =
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)91( r¯

, Ä
¯
, E) d E dÄ dV. (8)

The first term in the right-hand side of Eq. (7) is the physical detector response of P2
[11, 12]:

R2 =
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ dV. (9)

Therefore, Eq. (7) is rewritten as

R2− R1 =
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
91( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A. (10)

The roles of the forward and the adjoint equations can be interchanged. The adjoint transport
equation for P1 is ([1, 11])

−Ä
¯
· ∇̄9∗1( r¯, Ä¯, E)+6t ( r¯

, E)9∗1( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)9∗1( r¯

, Ä
¯
′, E′) dÄ′ d E′

+ D( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (11)

−Ä
¯
· ∇̄9∗1( r¯, Ä¯, E)+61,t ( r¯

, Ä
¯
, E)9∗1( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
61,s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)9∗1( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ V\VSD, (12)

9∗1( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
> 0, (13)

with a continuity condition,

lim
ε↓0
9∗1( r¯

− εÄ
¯
, Ä

¯
, E) = lim

ε↓0
9∗1( r¯

+ εÄ
¯
, Ä

¯
, E) for r

¯
∈ ∂VSD\∂V.
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The forward transport equation for P2 is ([1, 11])

Ä
¯
· ∇̄92( r¯

, Ä
¯
, E)+6t ( r¯

, E)92( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)92( r¯

, Ä
¯
′, E′) dÄ′ d E′

+ S( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (14)

Ä
¯
· ∇̄92( r¯

, Ä
¯
, E)+62,t ( r¯

, Ä
¯
, E)92( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
62,s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)92( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ V\VSD, (15)

92( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (16)

with a continuity condition,

lim
ε↓0
92( r¯

− εÄ
¯
, Ä

¯
, E) = lim

ε↓0
92( r¯

+ εÄ
¯
, Ä

¯
, E) for r

¯
∈ ∂VSD\∂V.

By taking the steps similar to those leading to Eq. (7), Eqs. (11), (13), (14), and (16) yield∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ d A

=
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ dV

−
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)92( r¯

, Ä
¯
, E) d E dÄ dV. (17)

In addition to Eqs. (8) and (9),R1 andR2 can also be expressed as

R1 =
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ dV, (18)

and

R2 =
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)92( r¯

, Ä
¯
, E) d E dÄ dV (19)

by references [11, 12]. Eq. (17) is rewritten as

R1− R2 =
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ d A. (20)

Since Eqs. (11)–(13) and (14)–(16) have simply interchanged the roles of the forward and
adjoint problems in Eqs. (1)–(3) and (4)–(6), Eq. (20) can be also obtained by interchanging
the subscripts “1” and “2” in Eq. (10).

We consider a special problem wherein a black absorber occupiesV\VSD. Here, the black
absorber has the total macroscopic cross section of infinite magnitude and the differential
scatterring macroscopic cross section of a zero value. PB is used to denote such a special
problem. In previous work, the so-called black absorber technique (perturbation) was uti-
lized [4, 7]. The difference between the previous work and the work in this paper resides
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in the setup of a spatial surface at which the bilinear integral of forward and adjoint fluxes
is defined to be calculated. In the former work, the spatial surface encloses either source or
detector, while in the latter work it encloses both source and detector. Now, we turn to the
forward and adjoint transport equation for PB:

Ä
¯
· ∇̄9B( r¯

, Ä
¯
, E)+6t ( r¯

, E)9B( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)9B( r¯

, Ä
¯
′, E′) dÄ′ d E′

+ S( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (21)

9B( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VSD andÄ

¯
· n

¯
< 0, (22)

and

−Ä
¯
· ∇̄9∗B( r¯, Ä¯, E)+6t ( r¯

, E)9∗B( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)9∗B( r¯

, Ä
¯
′, E′) dÄ′ d E′

+ D( r
¯
, Ä

¯
, E) for r

¯
∈ VSD, (23)

9∗B( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VSD andÄ

¯
· n

¯
> 0. (24)

The physical detector response of PB is expressed as ([11, 12])

RB =
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)9B( r¯

, Ä
¯
, E) d E dÄ dV. (25)

We make material 1 purely absorbing (61,s = 0) and let its total macroscopic cross section
tend to infinity (61,t →∞). The uncollided escape probability of the forward and adjoint
simulation particles from the purely absorbing material inV\VSD, then, monotonically
decreases to zero. This implies that91 and9∗1 monotonically decrease to9B and9∗B:

91 ↓ 9B and 9∗1 ↓ 9∗B as61,t →∞ with 61,s = 0.

Thus, when the limit operation61,t →∞ with 61,s = 0 is applied to Eqs. (8), (10), (18),
and (20),91 and9∗1 are bounded by integrable functions that are the particular versions of
91 and9∗1 resulting from setting61,s = 0 and61,t fixed-finite. The dominated convergence
theorem [13] allows one to interchange the order of the integral and limit in Eqs. (8) and
(18) as

lim
61,t→∞,61,s=0

R1 = lim
61,t→∞,61,s=0

∫
VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)91( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E) lim

61,t→∞,61,s=0
91( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)9B( r¯

, Ä
¯
, E) d E dÄ dV

= RB,
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and

lim
61,t→∞,61,s=0

R1 = lim
61,t→∞,61,s=0

∫
VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E) lim

61,t→∞,61,s=0
9∗1( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ dV

= RB,

where Eq. (25) was used for the equalities beforeRB. Similarly, the dominated convergence
theorem is applied to the right-hand side of Eqs. (10) and (20) as

lim
61,t→∞,61,s=0

∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
91( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A.

=
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
lim

61,t→∞,61,s=0
91( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A

=
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
9B( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A,

and

lim
61,t→∞,61,s=0

∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E)9∗1( r¯

, Ä
¯
, E) d E dÄ d A

=
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E) lim

61,t→∞,61,s=0
9∗1( r¯

, Ä
¯
, E) d E dÄ d A

=
∫
∂VSD\∂V

∫
4π

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ d A.

Hence, by taking into account the fact thatR2 is constant with respect to61,t and61,s,
Eqs. (10) and (20) with61,t →∞ and61,s = 0 yield

R2 = RB +
∫
∂VSD\∂V

∫
n·̄Ä

¯
>0

∫ E0

0
n
¯
·Ä

¯
9B( r¯

, Ä
¯
, E)9∗2( r¯

, Ä
¯
, E) d E dÄ d A, (26)

and

R2 = RB −
∫
∂VSD\∂V

∫
n·̄Ä

¯
<0

∫ E0

0
n
¯
·Ä

¯
92( r¯

, Ä
¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ d A

= RB +
∫
∂VSD\∂V

∫
n·̄Ä

¯
<0

∫ E0

0
|n
¯
·Ä

¯
|92( r¯

, Ä
¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ d A. (27)

By interchanging the forward and adjoint roles of P1 and P2, one obtains

R1 = RB +
∫
∂VSD\∂V

∫
n·̄Ä

¯
>0

∫ E0

0
n
¯
·Ä

¯
9B( r¯

, Ä
¯
, E)9∗1( r¯

, Ä
¯
, E)d EdÄd A, (28)
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and

R1 = RB −
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
91( r¯

, Ä
¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ d A

= RB +
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
<0

∫ E0

0
|n
¯
·Ä

¯
|91( r¯

, Ä
¯
, E)9∗B( r¯

, Ä
¯
, E) d E dÄ d A. (29)

Equations (26)–(29) are mathematical statements of response decomposition:a detector
response is decomposed into the components resulting from particle histories either confined
inside a source-detector enclosure or crossing and recrossing the same enclosure.The
first term in Eqs. (26)–(29) is the response resulting from the physical particle histories
designated as “H1” in Fig. 1 and is invariant with respect to material changes outside the
source-detector enclosure. The second term in the same equations is the response resulting
from the physical particle histories designated as “H2” in Figure 1 and is influened by the
foregoing changes. Equations. (26) and (28) yield

R1−R2 =
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
>0

∫ E0

0
n
¯
·Ä

¯
9B( r¯

, Ä
¯
, E)

× [9∗1( r¯
, Ä

¯
, E)−9∗2( r¯, Ä¯, E)] d E dÄ d A, (30)

and Eqs. (27) and (29) yield

R1− R2 =
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
<0

∫ E0

0
|n
¯
·Ä

¯
|

× [91( r¯
, Ä

¯
, E)−92( r¯

, Ä
¯
, E)]9∗B( r¯

, Ä
¯
, E) d E dÄ d A. (31)

Equations (30) and (31) are the exact expressions of the response variation from P1
to P2.

There exists previous work that is physically different from, but resembles in appearance,
the work in this paper. Hoffmanet al.studied response at a detector placed inside a perturb-
ing material [14]. This is obviously different from the physical problem analyzed in this
section. However, since the response can be expressed by a surface integral at the enclosure
encompassing the perturbing material, mathematical expressions similar in appearance to
Eqs. (30) and (31) appeared in the work of Hoffmanet al. On the other hand, S´anchez
has shown that the convolution of Green’s functions can systematically analyze a pair of
problems whose material distributions coincide in their common subdomain [15]. When
the domain of one problem is contained in the domain of the other problem, the paired
problems play the same role as P1 and PB or P2 and PB. Therefore, despite the apparent
difference in methodologies employed, the perturbation analysis in this section is closely
related to the Green’s function method in the work of S´anchez.

We compute Eq. (30) following the procedures in correlated coupling [7, 8]. To do this,
an arbitrary nonzero space–energy distribution function is introduced:∫

∂VSD\∂V

∫ E0

0
f ( r

¯
, E) d E d A= 1, f ( r

¯
, E) > 0.

One may utilize the discretized energy group structure in a nuclear cross section library;
f ( r

¯
, E) = (1/G)

∑G
g=1 fg( r¯

, E)where
∫
∂VSD\∂V

∫ Eg−1

Eg
fg( r¯

, E) d E d A= 1, fg( r¯
, E)= 0
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for E outside(Eg, Eg−1) and 0= EG < · · · < E0. Eq. (30) is then rewritten as

R1− R2 =
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
>0

∫ E0

0

π

f ( r
¯
, E)

9B( r¯
, Ä

¯
, E)[9∗1( r¯

, Ä
¯
, E)

−9∗2( r¯, Ä¯, E)]
f ( r

¯
, E)n

¯
·Ä

¯
π

d E dÄ d A. (32)

Here, we considerf ( r
¯
, E)n

¯
·Ä

¯
/π the probability density function of initial variables be-

cause
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
>0

∫ E0

0 [ f ( r
¯
, E)n

¯
·Ä

¯
/π ] d E dÄ d A= 1. The sampling fromf ( r

¯
, E)n

¯
·

Ä
¯
/π then corresponds to the initial (source) variable sampling in a standard forward or

adjoint Monte Carlo calculation, andπ/ f ( r
¯
, E) becomes an initial position-energy de-

pendent multiplier. Conditional on the sampled initial variables( r
¯
, Ä

¯
, E) = ( r

¯ I , Ä¯I , EI ),
the formally adjoint problems of Eqs. (21) and (22), Eqs. (11)–(13), and Eqs. (4)–(6) are
constructed with the unit monoenergetic and monodirectional point source or detector for
( r
¯ I , Ä¯I , EI ) in order to calculate9B( r¯ I , Ä¯I , EI ), 9∗1( r¯ I , Ä¯I , EI ), and9∗2( r¯ I , Ä¯I , EI ),

respectively, by independent Monte Carlo simulations. See Appendix A about these for-
mally adjoint problems. The product of the score for9B( r¯ I , Ä¯I , EI ) and the score dif-
ference for9∗1( r¯ I , Ä¯I , EI ) and9∗2( r¯ I , Ä¯I , EI ) multipled byπ/ f ( r

¯ I , EI ) is a statistical
entity. Conditional independence [16] ensures that the conditional expectation assuming the
sampled initial variables( r

¯ I , Ä¯I , EI ) is [π/ f ( r
¯ I , EI )]9B( r¯ I , Ä¯I , EI ) [9∗1( r¯ I , Ä¯I , EI )−

9∗2( r¯ I , Ä¯I , EI )]. This quantity integrated with the probability density functionf ( r
¯ I , EI )n

¯
·

Ä
¯I /π of the initial variables( r

¯ I , Ä¯I , EI ) becomes the expected value of the proposed
computational procedures by the theory of conditional expectation [17]. This yields unbi-
asedness. See Fig. 2 for the initial movements corresponding to( r

¯ I , Ä¯I , EI ). Since adjoint
simulation particles move in the direction opposite toÄ

¯
, the forward and adjoint simulation

particles are initiated in exactly opposite directions atr
¯ I . Moreover, the particle’s histories

FIG. 2. Initial movements of forward and adjoint histories to compute Eq. (30) (sampled initial variables are
position r

¯1, energyE1 and directionÄ
¯
).
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are initiated at the boundary between fixed and variable materials (perturbed and unper-
turbed subdomains). These two aspects correspond to exclusively constructing the physical
particle history traversing perturbed material. The development in this section shows that
the calculation of a response variation is a new application area to correlated coupling of
forward and adjoint histories.

There are several notable characteristics in the proposed computational scheme. First,
the procedure of taking the difference between the results from two independent Monte
Carlo calculations after all the histories are completed is avoided with no approximation in
a sense that all the higher order perturbed terms are kept. Recall that the score difference for
9∗1( r¯ I , Ä¯I , EI ) and9∗2( r¯ I , Ä¯I , EI ) is simply calculated at each sampling of( r

¯ I , Ä¯I , EI ).
Second, the statistical error is estimated in the same way as in the confidence interval
estimation in a standard forward or adjoint simulation because upon sampling( r

¯ I , Ä¯I , EI )

from f ( r
¯
, E)n

¯
·Ä

¯
/π , a statistical entity becomes

π

f ( r
¯ I , EI )

[adjoint Monte Carlo score for9B( r¯ I , Ä¯I , EI )]

×{[forward Monte Carlo score for9∗1( r¯ I , Ä¯I , EI )]

− [forward Monte Carlo score for9∗2( r¯ I , Ä¯I , EI )]}. (33)

Since( r
¯ I , Ä¯I , EI ) are sampled independently, variance estimation by the sample variance

formula is unbiased. Those two characteristics can be advantageous points over standard
techniques in Monte Carlo perturbation analysis [9, 10].

Equation (31) is also rewritten as

R1−R2 =
∫
∂VSD\∂V

∫
n
¯
·Ä
¯
<0

∫ E0

0

π

f ( r
¯
, E)

[91( r¯
, Ä

¯
, E)

−92( r¯
, Ä

¯
, E)]9∗B( r¯

, Ä
¯
, E)

f ( r
¯
, E)|n

¯
·Ä

¯
|

π
d E dÄ d A. (34)

All the foregoing arguments after Eq. (32) can be made with the interchanged roles of
forward and adjoint problems. They are straightforward and obvious, and their presentation
is omitted.

The analysis in this section remains valid as far as the following conditions are satis-
fied: there exists a path connecting a physical source and a physical detector only through
fixed material (unperturbed subdomain), and both the source and detector are isolated from
variable material (perturbed subdomain). One can then consider a source-detector enclo-
sure whose inside exclusively contains the unperturbed subdomain. However, for problems
wherein any source-detector enclosure always contains part of the perturbed subdomain,
the analysis leading to Eqs. (26)–(29) becomes invalid. Such problems are related to the
problem treated by the adjoint difference method by Hoffmanet al.[14]. See Appendix B for
details.

IV. NUMERICAL RESULTS

Numerical results are shown for multi-energy group problems with the group macro-
scopic cross sections derived in an approximate way [11]. One of the reasons for this is
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that continuous energy adjoint Monte Carlo is not available in full generality [18]. The
other reason is that multi-energy group problems serve the purpose of numerically showing
the correctness of the proposed correlated coupling procedures. All calculations are done
by the MCNP code [19] for neutral radiation particle transport with a new correlated cou-
pling option incorporated by the authors of this paper. Results from the correlated coupling
are compared with those from taking the difference between two independent standard
forward calculations after the completion of all the histories. Here, the word “standard”
is intended to imply that a simulation particle is born at a physical source and its score
is tallied at a physical detector. The reason for the foregoing comparison is that corre-
lated coupling unbiasedly computes the exact expression of response variation in Eqs. (30)
and (31) with the statistical error unbiasedly estimated in the same way as standard for-
ward calculations. The comparison should be made with a method with no approximation
and an unbiased sample variance estimation. Implicit particle capture with weight mul-
tiplication is used. Parameters for Russian roulette are set uniformly over all energy and
spatial domains and are the same for the two independent standard forward calculations
and the forward and adjoint calculations in the correlated coupling. The density func-
tion f ( r

¯
, E) for initial-variable sampling is taken to be uniform over space and energy

groups.
Batch-average product processing [7], the calculation of the three batch-averages for the

scores in Eq. (33), is employed. This is because when the product of two stochastic quantities
is processed as one statistical entity, its statistical porperty improves in a hybrid fashion as
the statistical properties of both the quantities improve, and this effect often overcomes the
increase of computational time. The advantage of batch-average product processing was
numerically demonstrated in [7]. Upon sampling initial-variables based on Eq. (32), the
forward flux in Eq. (30) is calculated by a batch of adjoint simulations. When all of the
simulations yield a zero score, zero is recorded as a statistical entity, the succeeding forward
simulations for the two adjoint fluxes in Eq. (30) are skipped and the next initial-variables
are sampled. When some of the preceding adjoint simulations yield nonzero scores, the
succeeding two batches of forward simulations are implemented, and Eq. (33) with the
three batch-averaged scores is recorded as a statistical entity. The number of histories per
batch is taken to be larger for the succeeding simulations than for the preceding simulation
following numerical analysis in [7]. In the calculation of Eq. (31) with the initial-variable
sampling based on Eq. (34), the role of forward and adjoint simulations are interchanged.
The adjoint flux in Eq. (31) is calculated by a batch of forward simulations. When all of
the simulations yield a zero score, zero is recorded as a statistical entity, the succeeding
adjoint simulations for the two forward fluxes in Eq. (31) are skipped and the next initial-
variables are sampled. When some of the preceding forward simulations yield nonzero
scores, the succeeding two batches of adjoint simulations are implemented and the three
batch-averaged scores are processed as in Eq. (33) with the interchaned roles of the forward
and adjoint simulations and fluxes.

Table I shows three energy group macroscopic cross sections for fictitious materials. The
values of these macroscopic cross sections are intended to explore a characteristic feature
of the proposed procedures. Figure 3 shows the arrangement of a source, a detector, and
perturbed spatial subdomains, cubes 1 and 2. Material inside either cube 1 or 2 is per-
turbed. The material in the unperturbed spatial subdomain is fixed to material 1. Table II
shows the flux difference resulting from the perturbation in cube 1 from material 2 to
material 3. Here, P1 corresponds to material 2 in cube 1 and P2 material 3 in cube 1. It



522 UEKI AND HOOGENBOOM

TABLE I

Three Energy Group Macroscopic Cross Sections in cm−1 with Isotropic Scattering

Material numberj

1 2 3 4

6 j,t,1 0.333333 0.333333 0.333333 0.333333
6 j,t,2 0.5 0.5 0.5 0.5
6 j,t,3 0.666666 0.666666 0.666666 0.666666
6 j,s,1 0.326666 0.3 0.283333 0.166666
6 j,s,2 0.49 0.45 0.425 0.25
6 j,s,3 0.653333 0.6 0.566666 0.333333
6 j,s,1→1 0.294 0.27 0.255 0.15
6 j,s,1→2 0.032666 0.03 0.028333 0.016666
6 j,s,2→2 0.441 0.405 0.3825 0.225
6 j,s,2→3 0.049000 0.045 0.0425 0.025
6 j,s,3→3a 0.653333 0.6 0.566666 0.333333

a Other group transfer macroscopic cross sections are zero.

FIG. 3. Arrangement of source, detector, and perturbed spatial subdomains for three energy group problems.
(The whole spatial domain is a cylinder with 45 cm radius and 90 cm length; the source and detector are sphere
with 1.5 cm radius, and their centers lie on the cylinder axis and are separated by 16 cm and away from the
top and bottom surfaces by equal distances; either cube 1 or 2 is a materially perturbed subdomain as in (b) in
Fig. 1; the center of cube 1 lies at the midpoint of the centers of the source and detector; the side of cube 1 is 6 cm;
two surfaces of cube 1 are vertical to the cylinder axis; any of the surfaces of cube 2 are parallel to some of the
surfaces of cube 1; the side of cube 2 is 2 cm; the center of cube 2 lies at the midpoint of one of the sides of cube
1 as drawn above.)
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TABLE II

Flux Difference (cm−2 s−1) Resulting from the Perturbation

from Material 2 to Material 3 inside Cube 1

Difference of two independent Correlated
standard forward calculations coupling

First group 7.28×10−6 5.90×10−6

(0.103)a (0.110)a

Second group 8.77×10−6 8.19×10−6

(0.071)a (0.060)a

Third group 5.16×10−5 5.03×10−5

(0.022)a (0.016)a

cpu time (min.)b 10366c 3870d

Note.Material 1 outside cube 1; first group particle source; flux is nor-
malized per particle born at source.

a Fractional standard deviation.
b Measured by Digital AlphaStation 600 5.
c 2 × 100,000,000 histories.
d 20,000,000 initial variable samplings based on Eq. (32); 4 adjoint and

2× 40 forward histories per initial variable.

can be observed that the computed values agree very well. Overall, correlated coupling
is about three times as efficient as taking the difference of two standard forward calcula-
tions. Table III shows the flux difference resulting from the perturbation in cube 2 from
material 2 to material 4. Here, P1 corresponds to material 2 in cube 2 and P2 material
4 in cube 2. It can be observed that the results from taking the difference between two
independent forward calculations are hopelessly inefficient for the first and second energy
groups, while all the results in correlated coupling have fractional standard deviations of

TABLE III

Flux Difference (cm−2 s−1) Resulting from the Perturbation from

Material 2 to Material 4 inside Cube 2

Difference of two independent Correlated
standard forward calculations coupling

First group 8.33×10−8 1.47×10−6

(12.6)a (0.046)a

Second group 1.90×10−6 1.70×10−6

(0.467)a (0.036)a

Third group 1.68×10−5 1.56×10−5

(0.106)a (0.009)a

cpu time (min.)b 6341c 2742d

Note.Material 1 outside cube 2; first group particle source; flux is normalized per
particle born at source.

a Fractional standard deviation.
b Measured by Digital AlphaStation 600 5.
c 2× 60,000,000 histories.
d 10,000,000 initial variable samplings based on Eq. (32); 4 adjoint and 2× 40

forward histories per initial variable.
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TABLE IV

Materials for 30 Energy Group Calculations

Material 5: limestone with 20% porosity, 2.3688 g/cm3

Material 6: Si : O : H : Na : Cl= 0.360 : 0.590 : 0.022 : 0.011 : 0.017 in wt%, 2.3g/cm3

Material 7: water (H2O), 1.0 g/cm3

Material 8: steel (Fe), 7.86 g/cm3

Material 9: helium 3 gas (He3), 0.000502 g/cm3

less than 5% with less than half the cpu time of those forward calculations. The results in
Tables II and III suggest that perturbation analysis by correlated coupling can be a very
valuable tool for perturbation in a small spatial subdomain isolated from the source and
detector.

Table IV shows materials used in 30 group calculations. Nuclear cross section library
accompanied with the MCNP code was used for those materials. Figure 4 shows the mate-
rial distribution and source-detector enclosure. An isotropic americium–beryllium neutron
source embedded in steel is considered. Material 5 is changed to material 6 and the difference
of the total flux averaged over the detector volume is calculated. Here, P1 corresponds to
material 5 outside the right parallelepiped and P2 material 6 outside that parallelpiped. The
material distribution inside the the right parallelepiped is fixed as shown in Fig. 4. Table V
shows numerical results for total neutron flux difference. The results from correlated cou-
pling agree very well with those from two independent standard forward calculations. The
computation of Eq. (31) is much more efficient than two independent standard forward
calculations, while the computation of Eq. (30) is inefficient. Since the computational do-
main of the succeeding simulations is much larger than that of the preceding simulation,
the succeeding simulations should have the larger of the physical source and detector as
their simulation detector. Here, a simulation detector is intended to stand for a physical
detector in forward simulations or a physical source in adjoint simulations. In the case of
Fig. 4, adjoint simulations should be chosen as the succeeding simulations, which implies
the computation of Eq. (31).

FIG. 4. Infinite medium of material 5 with right parallelepiped of infinite length containing different materials
(material 5 not shown; broken lines show the source-detector enclosure).
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TABLE V

Total Neutron Flux Difference (cm−2 s−1) Resulting from the Perturbation outside the Right

Parallelepiped in Fig. 4 from Material 5 to Material 6 in Table IV

Correlated coupling
Difference of two independent
standard forward calculations Eq. (30) Eq. (31)

Flux Difference −1.143× 10−4 −1.107× 10−4 −1.165× 10−4

FSDa 0.0095 0.0382 0.0107
cpu time (min)b 11246c 1564d 1509e

a Fractional standard deviation.
b Measured by Digital AlphaStation 600 5.
c 2× 80,000,000 histories.
d 960,000 initial variable samplings based on Eq. (32); 4 adjoint and 2× 40 forward histories per initial variable.
e 10,000,000 initial variable samplings based on Eq. (34); 4 forward and 2× 40 adjoint histories per initial

variable.

V. SUMMARY AND DISCUSSION

This paper has investigated a neutron or photon transport problem with perturbing mate-
rial outside a subdomain containing both the source and detector. Monte Carlo correlated
coupling has been developed which computes the variation of the detector response by ini-
tiating forward and adjoint histories in opposite directions at the surface of the perturbing
material. One history simulates the trajectory in the unperturbed subdomain and the other
history simulates the trajectory traversing the perturbed subdomain. In principle, the latter
simulation can be applied to many material changes in the perturbed subdomain and can
be coupled with just the single former simulation to compute the corresponding response
variations. The advantageous points of the method developed are summarized as follows.
First, the procedure of taking the difference between the results from two independent cal-
culations after the completion of all the histories is avoided with no approximation. The
method is based on the unbiased estimation of the exact surface integral expression of
the response variation. Second, the statistical error of the response variation is estimated in
the same way as in the confidence interval estimation in a standard forward or adjoint simu-
lation. Usually, these two points are not simultaneously satisfied by standard techniques in
Monte Carlo perturbation analysis [9, 10]. Thus, the methodology developed in Section III
may complement conventional practices. There are three immediate possibilities for further
developments:

1. The application to neutron and photon coupled transport can be investigated by ex-
tending the perturbation analysis in Section III to the coupled transport equations with
neutron and photon fluxes.

2. Conventional perturbation analysis techniques such as differential operator sampling
and correlated sampling [3, 9, 10, 12] may be combined with correlated coupling. An attempt
can be made at applying these techniques to the forward or adjoint history simulating the
trajectory traversing a perturbed subdomain. Batch-average product processing [7] should
be utilized as in the numerical results in Section IV.

3. The correlated coupling in this paper can be combined with next-event estimation
coupling in the generalized coupled history [6]. Figure 5 schematically shows a procedure
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FIG. 5. Next-event estimation coupling for perturbation analysis. [“F1” and “F2” imply the forward histories
in Figure 2; “AB” implies the adjoint hisotry in Figure 2; material in the perturbed subdomain is made purely
absorbing for the independent adjoint histories “A1” and “A2” starting from the detector; next-event estimation
couples collision sites in F1 with those in A1 to estimate9∗1( r

¯1, Äl
¯
, E1) and collision sites in F2 with those in A2

to estimate9∗2( r
¯1, Äl

¯
, E1).)

to do it. Perturbation invariance (an unbiased perturbation method of midway response) in
previous work [4, 7] should be applied to improve the next-event estimation using a purely
absorbing material [21]. In principle, a physical particle history is divided into three parts:
(1) the trajectory from the birth to the first entrance into a perturbed subdomain, (2) the
trajectory toward a detector after the last exit from the perturbed subdomain, and (3) the
trajectory in between. The response decomposition in this paper separates (1) from (2) and
(3), or (2) from (1) and (3). The perturbation invariance with a purely absorbing material
divides the remaining trajectories. Correlated coupling and next-event estimation coupling
couple (1) with (2) and (2) with (3).

APPENDIX A

Three Formally Adjoint Equations Corresponding to Sampled Initial Variables

Suppose that( r
¯ I , Ä¯I , EI ) are initial variables sampled from the probability density

function f ( r
¯
, E)n

¯
·Ä

¯
/π over ∂VSD\∂V , the positive half of the unit spherical surface

at the origin and(0, E0). The formally adjoint equations to estimate9B( r¯ I , Ä¯I , EI ),
9∗1( r¯ I , Ä¯I , EI ) and9∗2( r¯ I , Ä¯I , EI ) are presented in this appendix.

The formally adjoint equation to estimate9B( r¯ I , Ä¯I , EI ) is

−Ä
¯
· ∇̄8∗B( r¯, Ä¯, E)+6t ( r¯

, E)8∗B( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)8∗B( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ VSD, (A.1)
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8∗B( r¯
, Ä

¯
, E) = δ[∂VSD\∂V ]( r

¯
− r

¯ I )δ(E − EI )
δ2(Ä¯

−Ä
¯I )

n
¯
·Ä

¯I

for r
¯
∈ ∂VSD\∂V andÄ

¯
· n

¯
> 0, (A.2)

8∗B( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VSD∩ ∂V andÄ

¯
· n

¯
> 0, (A.3)

whereδ[∂VSD\∂V ]( r
¯
− r

¯ I ) is the Dirac delta function on∂VSD\∂V , δ2(Ä¯
−Ä

¯I ) is the
Dirac delta function on the unit spherical surface at the origin, and Eq. (A.3) is intended to
treat (b) in Fig. 1. (The set∂VSD∩ ∂V is an empty set for (a) in Fig. 1.) Following steps
similar to those leading to Eq. (7), Eqs. (21) and (22), and (A.1)–(A.3) yield

9B( r¯ I , Ä¯I , EI ) =
∫

VSD

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)8∗B( r¯

, Ä
¯
, E) d E dÄ dV. (A.4)

Equation (A.4) implies that the Monte Carlo simulation of Eqs. (A.1)–(A.3) estimates
9B( r¯ I , Ä¯I , EI ).

The formally adjoint equation to estimate9∗1( r¯ I , Ä¯I , EI ) is

Ä
¯
· ∇̄81( r¯

, Ä
¯
, E)+6t ( r¯

, E)81( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
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, Ä
¯
′ → Ä

¯
, E′ → E)81( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ VSD, (A.5)

Ä
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¯
, E)+61,t ( r¯

, Ä
¯
, E)81( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
61,s( r¯

, Ä
¯
′ →Ä

¯
, E′ → E)81( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ V\VSD, (A.6)

81( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (A.7)

lim
ε↓0

n
¯
·Ä

¯
81( r¯

+ εÄ
¯
, Ä

¯
, E)− lim

ε↓0
n
¯
·Ä

¯
81( r¯

− εÄ
¯
, Ä

¯
, E)

= δ[∂VSD\∂V ]( r
¯
− r

¯ I )δ(E − EI )δ2(Ä¯
−Ä

¯I )

for r
¯
∈ ∂VSD\∂V andÄ

¯
· n

¯
> 0, (A.8)

lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)

= lim
ε↓0
81( r¯

− εÄ
¯
, Ä

¯
, E) for r ∈ ∂VSD\∂V andÄ

¯
· n

¯
< 0, (A.9)

where in Eq. (A.8), the unit monoenergetic and monodirectional point source resulting from
( r
¯ I , Ä¯I , EI ) is expressed as a current jump condition. By considering the spatial integral

over an intertal volume strictly contained insideVSD and letting its surface overlap∂VSD

from the negative side of∂VSD, Eqs. (11), (13) and (A.5), (A.7) yield

−
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)81( r¯

, Ä
¯
, E) d E dÄ dV

=
∫

n
¯
·Ä
¯
>0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

− εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

+
∫

n
¯
·Ä
¯
<0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ. (A.10)
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By considerling the spatial integral over an internal volume strictly containingVSD and
letting its external surface overlap∂VSD from the positive side of∂VSD\∂V , Eqs. (11)–(13)
and (A.5)–(A.9) yield

0 =
∫

n
¯
·Ä
¯
>0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯

+
∫

n
¯
·Ä
¯
<0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

− εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯
, (A.11)

where the left-hand side is zero because the volume that is shrinking toVSDcontains both the
source and detector, and the so-called contributions represented by819

∗
1 originate at the

source, flow out at the detector, do not leak through the the external surface∂V , and survive
a collision with probability one and no multiplication [12]. The current jump condition
(A.8) with the continuity of9∗2( r¯

, Ä
¯
, E) yields

∫
n
¯
·Ä
¯
>0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

−εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯
+9∗1( r¯ I , Ä¯I , EI )

=
∫

n
¯
·Ä
¯
>0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯
, (A.12)

and Eq. (A.9) yields

∫
n
¯
·Ä
¯
<0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯

=
∫

n
¯
·Ä
¯
<0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

− εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯
. (A.13)

Adding Eq. (A.13) to Eq. (A.12) side by side and using Eq. (A.11), one obtains

∫
n
¯
·Ä
¯
>0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

− εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯

+
∫

n
¯
·Ä
¯
<0

∫
∂VSD\∂V

∫ E0

0
n
¯
·Ä

¯
lim
ε↓0
81( r¯

+ εÄ
¯
, Ä

¯
, E)9∗1( r¯

, Ä
¯
, E) d E d A dÄ

¯

+9∗1( r¯ I , Ä¯I , EI ) = 0. (A.14)

Equations (A.10) and (A.14) yield

9∗1( r¯ I , Ä¯I , EI ) =
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)81( r¯

, Ä
¯
, E) d E dÄ dV. (A.15)

Equations (A.15) implies that the Monte Carlo simulation of Eqs. (A.5)–(A.9) estimates
9∗1( r¯ I , Ä¯I , EI ).
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The formally adjoint equation to estimate9∗2( r¯ I , Ä¯I , EI ) is

Ä
¯
· ∇̄82( r¯

, Ä
¯
, E)+6t ( r¯

, E)82( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)82( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ VSD, (A.16)

Ä
¯
· ∇̄82( r¯

, Ä
¯
, E)+62,t ( r¯

, Ä
¯
, E)82( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
62,s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)82( r¯

, Ä
¯
′, E′) dÄ′ d E′ for r

¯
∈ V\VSD,

(A.17)

82( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (A.18)

lim
ε↓0

n
¯
·Ä

¯
82( r¯

+ εÄ
¯
, Ä

¯
, E)− lim

ε↓0
n
¯
·Ä

¯
82( r¯

− εÄ
¯
, Ä

¯
, E)

= δ[∂VSD\∂V ]( r
¯
− r

¯ I )δ(E − EI )δ2(Ä¯
−Ä

¯I ) for r
¯
∈ ∂VSD\∂V andÄ

¯
· n

¯
> 0,

(A.19)

lim
ε↓0
82( r¯

+ εÄ
¯
, Ä

¯
, E) = lim

ε↓0
82( r¯

− εÄ
¯
, Ä

¯
, E) for r

¯
∈ ∂VSD\∂V andÄ

¯
· n

¯
< 0.

(A.20)

Through manipulation in the same way as in Eqs. (A.5)–(A.15), one obtains

9∗2( r¯ I , Ä¯I , EI ) =
∫

VSD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)82( r¯

, Ä
¯
, E) d E dÄ dV. (A.21)

Eq. (A.21) implies that the Monte Carlo simulation of Eqs. (A.16)–(A.20) estimates9∗2( r¯ I ,

Ä
¯I , EI ).

APPENDIX B

Response Variation Resulting from Material Change Separating a Source
and a Detector and Its Relation to the Adjoint Difference Method

Response variation because of material changes in a subdomain separating a source
and a detector is considered. In other words, a case wherein any source-detector enclosure
contains part of the perturbed subdomain is considered. The relation to the adjoint difference
method [14] is also described. First, the source is assumed to be situated outside the perturbed
subdomain. The forward transport equation for an unperturbed subdomain containing the
source is

Ä
¯
· ∇̄η( r

¯
, Ä

¯
, E)+6t ( r¯

, E)η( r
¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)η( r

¯
, Ä

¯
′, E′) dÄ′ d E′ + S( r

¯
, Ä

¯
, E) for r

¯
∈ VS,

(B.1)

η( r
¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VS andÄ

¯
· n

¯
< 0. (B.2)
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The adjoint transport equation for the whole spatial domain is

−Ä
¯
· ∇̄η∗i ( r¯, Ä¯, E)+6t ( r¯

, E)η∗i ( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)η∗i ( r¯

, Ä
¯
′, E′) dÄ′ d E′, for r

¯
∈ VS, (B.3)

−Ä
¯
· ∇̄η∗i ( r¯, Ä¯, E)+6i,t ( r¯

, Ä
¯
, E)η∗i ( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
6i,s( r¯

, Ä
¯
→Ä

¯
′, E→ E′)η∗i ( r¯

, Ä
¯
′, E′) dÄ

¯
′ d E′+D( r

¯
, Ä

¯
, E) for r

¯
∈VD,

(B.4)

η∗i ( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
> 0, (B.5)

with a continuity condition at the internal boundary,

lim
ε↓0
η∗i ( r¯
− εÄ

¯
, Ä

¯
, E) = lim

ε↓0
η∗i ( r¯
+ εÄ

¯
, Ä

¯
, E) for r

¯
∈ ∂VS∩ ∂VD,

where the subscripti of the macroscopic cross sections in Eq. (B.4) implies that any material
designated asi can occupyVD, the subscripti of the adjoint flux stands for the corresponding
solution, the whole spatial domainV is divided intoVS andVD, S= 0 in VD, andD = 0
in VS. Note that the material inVS is the same for both the forward and adjoint equations,
and the perturbation is relegated to the arbitrariness of materiali . By the black absorber
technique [4, 7], the detector response due to the materiali has two expressions in terms of
η( r

¯
, Ä

¯
, E) andη∗i ( r¯

, Ä
¯
, E):

Ri =
∫

VS

∫
4π

∫ E0

0
S( r

¯
, Ä

¯
, E)η∗i ( r¯

, Ä
¯
, E) d E dÄ dV

=
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
>0

∫ E0

0
n
¯
·Ä

¯
η( r

¯
, Ä

¯
, E)η∗i ( r¯

, Ä
¯
, E) d E dÄ d A. (B.6)

The response variation resulting from the material change fromi = 1 to i = 2 is expressed
as

R2− R1 =
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
>0

∫ E0

0
n
¯
·Ä

¯
η( r

¯
, Ä

¯
, E)[η∗2( r¯

, Ä
¯
, E)

− η∗1( r¯, Ä¯, E)] d E dÄ d A. (B.7)

This can be handled as in Eq. (32).
Second, the detector is assumed to be situated outside the perturbed subdomain. The

adjoint transport equation for an unperturbed subdomain containing the detector is

−Ä
¯
· ∇̄ξ ∗( r

¯
, Ä

¯
, E)+6t ( r¯

, E)ξ ∗( r
¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
→ Ä

¯
′, E→ E′)ξ ∗( r

¯
, Ä

¯
′, E′) dÄ′ d E′

+ D( r
¯
, Ä

¯
, E) for r

¯
∈ VD, (B.8)

ξ ∗( r
¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VD andÄ

¯
· n

¯
> 0. (B.9)
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The forward transport equation for the whole spatial domain is

Ä
¯
· ∇̄ξi ( r¯

, Ä
¯
, E)+6t ( r¯

, E)ξi ( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)ξi ( r¯

, Ä
¯
′, E′) dÄ′ d E′, for r

¯
∈ VD, (B.10)

Ä
¯
· ∇̄ξi ( r¯

, Ä
¯
, E)+6i,t ( r¯

, Ä
¯
, E)ξi ( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
6i,s( r¯

, Ä
¯
′ →Ä

¯
, E′ → E)ξi ( r¯

, Ä
¯
′, E′) dÄ′ d E′ + S( r

¯
, Ä

¯
, E) for r

¯
∈ VS,

(B.11)

ξi ( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (B.12)

with a continuity condition

lim
ε↓0
ξi ( r¯
− εÄ

¯
, Ä

¯
, E) = lim

ε↓0
ξi ( r¯
+ εÄ

¯
, Ä

¯
, E) for r

¯
∈ ∂VS∩ ∂VD.

By the black absorber technique [4, 7], the detector response resulting from the materiali
has two expressions in terms ofξ ∗( r

¯
, Ä

¯
, E) andξi ( r¯

, Ä
¯
, E),

Ri =
∫

VD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)ξi ( r¯

, Ä
¯
, E) d E dÄ dV

= −
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
ξi ( r¯

, Ä
¯
, E)ξ∗( r

¯
, Ä

¯
, E) d E dÄ d A, (B.13)

where the positive directions of∂VS∩ ∂VD in Eqs. (B.6) and (B.13) are opposite. The
second equality in Eq. (B.13) is equivalent to Eq. (15) in the work of Hoffmanet al. [14].
The response variation resulting from the material change fromi = 1 toi = 2 is expressed as

R2− R1 = −
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
[ξ2( r¯

, Ä
¯
, E)− ξ1( r¯

, Ä
¯
, E)]

× ξ ∗( r
¯
, Ä

¯
, E) d E dÄ d A. (B.14)

This can be handled as in Eq. (34). Now, we perturb the common macroscopic cross sections
in VD for the adjoint equations (B.8) and (B.9)

−Ä
¯
· ∇̄ ξ̃ ∗( r

¯
, Ä

¯
, E)+ 6̃t ( r¯

, E)ξ̃∗( r
¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6̃s( r¯

, Ä
¯
→Ä

¯
′, E→ E′)ξ̃ ∗( r

¯
, Ä

¯
′, E′) dÄ′ d E′ + D( r

¯
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¯
, E) for r

¯
∈VD,

(B.15)

ξ̃ ∗( r
¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂VD andÄ

¯
· n

¯
> 0, (B.16)

and the forward equations (B.10)–(B.12)

Ä
¯
· ∇̄ ξ̃i ( r¯

, Ä
¯
, E)+ 6̃t ( r¯

, E)ξ̃i ( r¯
, Ä

¯
, E)

=
∫ E0

0

∫
4π
6̃s( r¯

, Ä
¯
′ → Ä

¯
, E′ → E)ξ̃i ( r¯

, Ä
¯
′, E′) dÄ′ d E′, for r

¯
∈ VD, (B.17)
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Ä
¯
· ∇̄ ξ̃i ( r¯

, Ä
¯
, E)+6i,t ( r¯

, Ä
¯
, E)ξ̃i ( r¯

, Ä
¯
, E)

=
∫ E0

0

∫
4π
6i,s( r¯

, Ä
¯
′ →Ä

¯
, E′ → E)ξ̃i ( r¯

, Ä
¯
′, E′) dÄ′ d E′ + S( r

¯
, Ä

¯
, E) for r

¯
∈VS,

(B.18)

ξ̃i ( r¯
, Ä

¯
, E) = 0 for r

¯
∈ ∂V andÄ

¯
· n

¯
< 0, (B.19)

where the continuity condition ofξi holds forξ̃i as well. The perturbed detector response
resulting from the materiali is expressed as in Eq. (B.13) by

R̃i =
∫

VD

∫
4π

∫ E0

0
D( r

¯
, Ä

¯
, E)ξ̃i ( r¯

, Ä
¯
, E) d E dÄ dV

= −
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
ξ̃i ( r¯

, Ä
¯
, E)ξ̃ ∗( r

¯
, Ä

¯
, E) d E dÄ d A. (B.20)

WhenVD is small compared to the whole spatial domain and the source and detector are
separated by large distance,R̃i may be approximated as

R̃i ≈ −
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
ξi ( r¯

, Ä
¯
, E)ξ̃∗( r

¯
, Ä

¯
, E) d E dÄ d A. (B.21)

This is called the surface integral approximation [14]. Its associate error is

1R̃i =
∫
∂VS∩∂VD

∫
n
¯
·Ä
¯
<0

∫ E0

0
n
¯
·Ä

¯
[ξi ( r¯

, Ä
¯
, E)− ξ̃i ( r¯

, Ä
¯
, E)]

× ξ̃ ∗( r
¯
, Ä

¯
, E) d E dÄ d A. (B.22)

This was proven to be equal to the error associated with the adjoint difference
approximation [14].
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